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Abstract

Abstract We explore a combinatorial bijection between two
seemingly unrelated topics: the roots of irreducible polynomials of
degree m over a finite field Fp for a prime number p and the
number of points that are periodic of order m for a continuous
piece-wise linear function gp : [0, 1]→ [0, 1] that goes up and down
p times with slope ±p.
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Functions going up and down
Let gp : [0, 1]→ [0, 1] a continuous function piecewise linearly

defined on the intervals Ik :=
[
k
p ,

k+1
p

]
for 0 ≤ k ≤ p − 1, with Ik

increasing from 0 to 1 for k even, and linearly decreasing from 1 to
0 on Ik for k odd.
Denote by gn

p to the function obtained by taking gp composed with
itself n times. gn

p has pn fixed points.
A point x is called to be periodic of order m if gm

p (x) = x , and

g i
p(x) 6= x for i = 1, 2, . . . ,m − 1.

Example: Functions g2, g2
2 and g3

2 with its fixed points.



Combinatorial Relationship

Theorem
The number Jp(m) of points x ∈ FP(gm

p ) periodic of order m is
equal to the number of roots of monic irreducible polynomials of
degree m over the finite field Fp.

Proof.
Both values can be computed by Möbius inversion formula. They
satisfy the relation

∑
d |n Jp(d) =

∑
d |n mIp(d) = pn, in both cases

(where Ip(m) denotes the number of irreducible polynomials of
degree m over Fp and the sum represent all elements of Fpn .)
Then we find that Jp(m) = mIp(m) =

∑
d |n µ(n/d)pd .

Corollary

There is a bijection B : FP(gn
p )→ Fpn , such that

B(x)p = B(gp(x)) for every x ∈ FP(gn
p ).

We provide here one such bijection, connecting some of the
structure of both worlds.



Bijection via permutation πpn

We want to get a bijective proof. For this we construct a
permutation map πpn : {0, 1, . . . , pn − 1} → {0, 1, . . . , pn − 1}
that help us to create our bijection B, as follows:

Definition
Take πp1 the identity map from 0 to p − 1. Then if
apn−1 ≤ k < (a + 1)pn−1,

πpn(k) =

{
πpn−1(k − apn−1) + apn−1 for a even

πpn−1(pn−1 − (k − apn−1)− 1) + apn−1 for a odd.

Some examples for p = 2 and p = 3 of how πpn permute the
numbers 0, 1, . . . , pn − 1 :
π21 : 0, 1
π22 : 0, 1, 3, 2
π23 : 0, 1, 3, 2, 6, 7, 5, 4
π24 : 0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8



Main Theorem

Definition (Bijection Bα)

Let α be a primitive root (i. e. a generator of the multiplicative
group) of Fpn and 0 = x0 < x1 < · · · < xpn−1 be the fixed points
of gn

p . We define the bijection Bα : FP(gn
p )→ Fpn by

Bα(x0) = 0 ∈ Fpn or Bα(xk) = απpn (k) for all other k > 0.

Theorem
The function Bα is a bijection such that (Bα(xk))p = Bα(gp(xk))
for any fixed point xk ∈ FP(gn

p ).

Proposition

The bijection Bα : FP(gn
p )→ Fpn satisfy that

Bα(xi )Bα(xj) = Bα(xr ) with

r = π−1pn ((πpn(i) + πpn(j)) mod pn − 1),

for any 0 < i , j < pn, where the class representative modulo pn − 1
must be taken from 1 to pn − 1.



Bijection Bα for p = 2, n = 4, and α4 + α + 1 = 0 in F24

i xi gp(xi ) πpn(i) Bα(xi )

0 0.0 0.0 0 0
1 0.1176470588 0.2352941176 1 α
2 0.1333333333 0.2666666666 3 α3

3 0.2352941176 0.4705882352 2 α2

4 0.2666666666 0.5333333333 6 α3 + α2

5 0.3529411764 0.7058823529 7 α3 + α + 1
6 0.4 0.8 5 α2 + α
7 0.4705882352 0.9411764705 4 α + 1
8 0.5333333333 0.9333333333 12 α3 + α2 + α + 1
9 0.5882352941 0.8235294117 13 α3 + α2 + 1
10 0.6666666666 0.6666666666 15 1
11 0.7058823529 0.5882352941 14 α3 + 1
12 0.8 0.3999999999 10 α2 + α + 1
13 0.8235294117 0.3529411764 11 α3 + α2 + α
14 0.9333333333 0.1333333333 9 α3 + α
15 0.9411764705 0.1176470588 8 α2 + 1



Example: Function g4
2 with its fixed points.



More examples: p=3

π31 : 0, 1, 2
π32 : 0, 1, 2, 5, 4, 3, 6, 7, 8
π33 : 0, 1, 2, 5, 4, 3, 6, 7, 8, 17, 16, 15, 12, 13, 14, 11, 10, 9,

18, 19, 20, 23, 22, 21, 24, 25, 26

Example: Functions g3, g2
3 and g3

3 with its fixed points.



gp and its periodic points in base p

To prove the main theorem we need to understand gp, its periodic
points, and πpn in base p, .

Proposition

If x =
∑

i≥1
ai
pi

for 0 ≤ ai ≤ p − 1, then

gp(x) =

{∑
i≥1

ai+1

pi
, if a1 is even.∑

i≥1
p−1−ai+1

pi
, if a1 is odd.

Proposition

Let x0 < x1 < . . . < xpn−1 be the fixed points of the function gn
p .

Then, for k < pn we have that xk = k
pn−1 if k is even, or

xk = k+1
pn+1 if k is odd.



gp and its periodic points in base p

Proposition

The expression in base p of x = k
pn−1 is periodic, where the first n

digits represent k in base p and an+i = ai . Also, if x = k+1
pn+1 , its

expression in base p has period 2n, where the first n digits
represent k in base p, while the next n digits are complementary of
the first n digits, that is an+i = p − 1− ai .

Example

The function g2 permutes the fixed points in FP(g3
2 ) as follows:

0.0002 → 0.0002
0.0011102 → 0.0111002 → 0.1110002 → 0.0011102

0.0102 → 0.1002 → 0.1102 → 0.0102
0.1010102 → 0.1010102



πpn in base p

Proposition

If k = (a1a2 . . . an)p (where k < pn), then πpn(k) = (b1b2 . . . bn)p
where b1 = a1, and bi = ai when b1 + · · ·+ bi−1 is even or
bi = p − 1− ai when b1 + · · ·+ bi−1 is odd.

Notice that for p odd, taking p − 1 complement doesn’t change
the parity of the digits, and therefore we could use the parity of
a1 + · · ·+ ai−1 to create the two cases in the previous proposition.
In case p = 2 things are a little bit different.

Proposition

If p = 2 and i = (a1a2 . . . an)2, then πpn(i) = (b1b2 . . . bn)2 where
b1 = a1, and bi = 0 if ai−1 = ai or bi = 1 otherwise.



Sketch of Proof of the Main Theorem

We need to check that (Bα(xk))p = Bα(gp(xk))
for any xk ∈ FP(gn

p ). We can analyze every step
in base p to check that the following diagram
commutes, where fr is the Frobenius Map
fr : x 7→ xp.

FP(gn
p ) Fpn

FP(gn
p ) Fpn

Bα

gp fr

Bα

If k = (a1 . . . an)p < pn, then xk = (0.a1 . . . ana′1 . . . a
′
n)p where

a′i = ai in case that (a1 . . . an)p is even, or a′i = p − 1− ai if
(a1 . . . an)p is odd.
Denote πpn(k) = (b1b2 . . . bn)p,. Then b1 = a1, and bi = ai when
b1 + · · ·+ bi−1 is even or bi = p − 1− ai when b1 + · · ·+ bi−1 is
odd.
Also (Bα(xk))p = αp(b1...bn)p = α(b1...bn0)p = α(b2...bnb1)p , since
αpn = α in the finite field Fpn .
We need to consider two cases, depending if a1 is even or odd.
Also cases depending if p = 2 or p is odd...



Generalizations: Other functions going up and down

We want to extend our Theorem to other functions
fp : [u, v ]→ [u, v ] going up and down p times. We restrict to the
case that there is a continuous bijection h : [0, 1]→ [u, v ] that is a
homeomorphism between both functions gp and fp (so that
fp ◦ h = h ◦ gp). In this case we can easily extend our results to fp
as well.

Theorem
If fp : [u, v ]→ [u, v ] is such that there is a continuous bijection
h : [0, 1]→ [u, v ] so that fp ◦ h = h ◦ gp, then there is a bijection
Bf : FP(f n

p )→ Fpn so that (Bf (yi ))p = Bf (fp(yi )) for any fixed
point yi ∈ FP(f n

p ).

As an example we will see how to extend our results to Chebyshev
Polynomials.



Example: Chebyshev Polynomials

Definition (Chebyshev polynomials)

The family of Chebyshev polynomials Tk ∈ R[x ] can be defined
recursively by T0(x) = 1, T1(x) = x , and
Tk+1(x) = 2xTk(x)− T k − 1(x).

The next polynomials in the
sequence are T2(x) = 2x2 − 1,
T3(x) = 4x3 − 3x ,
T4(x) = 8x4 − 8x2 + 1,
T5(x) = 16x5 − 20x3 + 5x , and
T6(x) = 32x6 − 48x4 + 18x2 − 1.

Proposition

The Chebyshev polynomial Tn is the expressions for cos(nθ) in
terms of cos(θ), namely it holds that cos(nθ) = Tn(cos(θ)).



Example: Chebyshev Polynomials

Then Tm ◦ Tn = Tmn and also T n
p = Tpn .

Tm goes up and down m times in the interval [-1,1]

Proposition

The continuous bijection h : [0, 1]→ [−1, 1] is given by
h(x) = cos(πx). It holds that Tp ◦ h = h ◦ gp for any value of p.

Theorem
There is a bijection Bf : FP(T n

p )→ Fpn so that
(Bf (yi ))p = Bf (Tp(yi )) for any fixed point yi ∈ FP(T n

p ).

If xi ∈ FP(gpn) then yi = h(xi ) = cos(πxi ) ∈ FP(Tpn(x)− x).

Corollary

If p is odd, then T n
p (x)− x =

2p
n−1(x − 1)

∏(pn−1)/2
k=1

(
x − cos

(
(2k−1)π
pn+1

))(
x − cos

(
2kπ
pn−1

))
.



Generalization: piecewise linear functions going up or down

Definition
Let p be a prime number, and I ⊆ {0, 1, 2, . . . , p − 1}. The
function gp,I : [0, 1]→ [0, 1] given by

gp,I (x) =

{
px − k, for k

p ≤ x < k+1
p with k ∈ I .

k + 1− px , for k
p ≤ x < k+1

p with k /∈ I .

In this case gp,I is a piece-wise linear function where I denotes the
set of indices k where gp,I is increasing.
If I are all even numbers, then gp,I = gp. If I includes all indices,
then gp,I = {px} (the fractionary part of px).

Definition
The set Ipn ⊆ {0, 1, 2, . . . , pn − 1} is the set of indices where gn

p,I is

increasing on the interval ( k
pn ,

k+1
pn ).

We can generalize our theorems for all functions gp,I .



Generalization for functions gp,I

Definition
The permutation πpn,I is defined recursively as follows: take πp1,I
the identity map from 0 to p − 1. Then to define πpn,I , if
apn−1 ≤ k < (a + 1)pn−1 take

πpn,I (k) =

{
apn−1 + πpn−1,I (k − apn−1) for a ∈ I

apn−1 + πpn−1,I (pn−1 − (k − apn−1)− 1) for a /∈ I

Let α be a primitive root and let x0 < x1 < · · · < xpn−1 be the
fixed points of gn

p,I . We define Bα,I : FP(gn
p,I )→ Fpn by

Bα(xπpn,I (0)) = 0 ∈ Fpn or Bα(xk) = απpn,I (k) for all other k > 0.

Theorem
The function Bα,I is a bijection and satisfy that
Bα,I (xk)p = Bα,I (gp,I (xk)) for any fixed point xk ∈ FP(gn

p,I ).



Example: p = 3, I = {2}
For p = 3, and I = {2}, then πpn,I permutes as follows:
π31,I : 0, 1, 2
π32,I : 2, 1, 0, 5, 4, 3, 6, 7, 8
π33,I : 8, 7, 6, 3, 4, 5, 0, 1, 2, 17, 16, 15, 12, 13, 14, 9, 10, 11,

20, 19, 18, 23, 22, 21, 24, 25, 26

Fixed points of g32,I and g33,I , with orbits under g3,I .



Thank you!

Article, slides and interactive visualization can be found at
https://emersonjleon.pythonanywhere.com/math

https://emersonjleon.pythonanywhere.com/math

