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A Warm-Up Example

Lattice polytope P ⊂ Rd – convex hull of finitely points in Zd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
,

the discrete volume of P.
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the discrete volume of P.

Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2
≥0 : x+ y ≤ 1

}
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A Warm-Up Example

Lattice polytope P ⊂ Rd – convex hull of finitely points in Zd

For t ∈ Z>0 let LP(t) := #
(
tP ∩ Zd

)
,

the discrete volume of P.

Example:

∆ = conv {(0, 0), (1, 0), (0, 1)}

=
{

(x, y) ∈ R2
≥0 : x+ y ≤ 1

}

L∆(t) =
(
t+2

2

)
= 1

2(t+ 1)(t+ 2) ,

a polynomial in t with leading coefficient vol (∆) =
1
2

.
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Warm-Up in d Dimensions

The standard d-simplex

∆ =
{
x ∈ Rd

≥0 : x1 + x2 + · · ·+ xd ≤ 1
}

= conv {(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}
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Warm-Up in d Dimensions

The standard d-simplex

∆ =
{
x ∈ Rd

≥0 : x1 + x2 + · · ·+ xd ≤ 1
}

= conv {(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}

has discrete volume

L∆(t) =
(
t+ d

d

)
=

(t+ d)(t+ d− 1) · · · (t+ 1)
d!
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The standard d-simplex

∆ =
{
x ∈ Rd

≥0 : x1 + x2 + · · ·+ xd ≤ 1
}

= conv {(0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}

has discrete volume

L∆(t) =
(
t+ d

d

)
=

(t+ d)(t+ d− 1) · · · (t+ 1)
d!

=
1
d!

d∑
k=0

(−1)d−k stirl(d+ 1, k + 1) tk,
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Warm-Up Reciprocity

The interior of the standard d-simplex,

∆◦ =
{
x ∈ Rd

>0 : x1 + x2 + · · ·+ xd < 1
}
,
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Warm-Up Reciprocity

The interior of the standard d-simplex,

∆◦ =
{
x ∈ Rd

>0 : x1 + x2 + · · ·+ xd < 1
}
,

has discrete volume

L∆◦(t) =
(
t− 1
d

)
=

(t− 1)(t− 2) · · · (t− d)
d!

,
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Warm-Up Reciprocity

The interior of the standard d-simplex,

∆◦ =
{
x ∈ Rd

>0 : x1 + x2 + · · ·+ xd < 1
}
,

has discrete volume

L∆◦(t) =
(
t− 1
d

)
=

(t− 1)(t− 2) · · · (t− d)
d!

,

a polynomial that happens to satisfy the algebraic relation(
t− 1
d

)
= (−1)d

(
−t+ d

d

)
, that is, L∆(−t) = (−1)dL∆◦(t) .
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Warm-Up Generating Functions

The discrete volume L∆(t) =
(
t+d
d

)
of the standard d-simplex comes with

the friendly generating function

∑
t≥0

(
t+ d

d

)
zt =

1
(1− z)d+1

.

10 Years BADGeometry: Progress and Open Problems in Ehrhart Theory Matthias Beck 6



Warm-Up Generating Functions

The discrete volume L∆(t) =
(
t+d
d

)
of the standard d-simplex comes with

the friendly generating function

∑
t≥0

(
t+ d

d

)
zt =

1
(1− z)d+1

.

Motivated by this example, we define the Ehrhart series of the lattice
polytope P as

EhrP(z) := 1 +
∑
t≥1

LP(t) zt.
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
LP(k) is a polynomial in k of degree dimP with
leading term volP and constant term 1.

Equivalently, EhrP(z) is a rational function of the form

h(z)
(1− z)dimP+1

where the Ehrhart h-vector h(z) satisfies h(0) = 1 and
h(1) = (dimP)! volP.
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Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope P,
LP(k) is a polynomial in k of degree dimP with
leading term volP and constant term 1.

Equivalently, EhrP(z) is a rational function of the form

h(z)
(1− z)dimP+1

where the Ehrhart h-vector h(z) satisfies h(0) = 1 and
h(1) = (dimP)! volP.

Theorem (Macdonald 1971) (−1)dimPLP(−k)
enumerates the interior lattice points in kP.
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.
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I Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.
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Why Should We Care?

I Linear systems are everywhere, and so polytopes are everywhere.

I In applications, the volume of the polytope represented by a linear
system measures some fundamental data of this system (“average”).

I Polytopes are basic geometric objects, yet even for these basic objects
volume computation is hard and there remain many open problems.

I Many discrete problems in various mathematical areas are linear
problems, thus they ask for the discrete volume of a polytope in
disguise.

I Ehrhart’s and Macdonald’s theorems allows us to compute a
(complicated) integral discreetly (e.g., by interpolating a function at
d
2 points).

\
e

∧
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A Few Classic Theorems

Let P be a lattice d -polytope with Ehrhart h-vector h(z) = hsz
s +

hs−1z
s−1 + · · ·+ h0 (we set all other hk = 0).

Corollary hd = #
(
P◦ ∩ Zd

)
and h1 = #

(
P ∩ Zd

)
− d− 1.
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Theorem (Stanley 1991) h0 + h1 + · · · + hj ≤ hs + hs−1 + · · · + hs−j for
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⌋
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A Few Classic Theorems

Let P be a lattice d -polytope with Ehrhart h-vector h(z) = hsz
s +

hs−1z
s−1 + · · ·+ h0 (we set all other hk = 0).

Corollary hd = #
(
P◦ ∩ Zd

)
and h1 = #

(
P ∩ Zd

)
− d− 1.

Theorem (Stanley 1980) h0, h1, . . . , hd are nonnegative integers.

Theorem (Stanley 1991) h0 + h1 + · · · + hj ≤ hs + hs−1 + · · · + hs−j for
all 0 ≤ j ≤ s.

Theorem (Hibi 1994) h0 + · · ·+hj+1 ≥ hd + · · ·+hd−j for 0 ≤ j ≤
⌊

d
2

⌋
−1.

Theorem (Ehrhart) For any rational polytope P, EhrP(z) can be written as
h(z)

(1− zp)dimP+1
where p is the denominator of P.

10 Years BADGeometry: Progress and Open Problems in Ehrhart Theory Matthias Beck 9



A (Too Ambitious) Research Program

Classify Ehrhart polynomials (or, alternatively, Ehrhart h-vectors).
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A (Too Ambitious) Research Program

Classify Ehrhart polynomials (or, alternatively, Ehrhart h-vectors).

c1

c21

1

This has been done in dimension ≤ 2
—follows from Pick’s Theorem and
Scott’s inequality for convex lattice
polygons (1976).
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A (Doable) Research Program

Classify Ehrhart polynomials (or, alternatively, Ehrhart h-vectors),
concentrating on

I finding new inequalities among coefficients
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Classify Ehrhart polynomials (or, alternatively, Ehrhart h-vectors),
concentrating on

I finding new inequalities among coefficients

I low dimensions/degree

I simplifying/relaxing conditions
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A (Doable) Research Program

Classify Ehrhart polynomials (or, alternatively, Ehrhart h-vectors),
concentrating on

I finding new inequalities among coefficients

I low dimensions/degree

I simplifying/relaxing conditions

I special classes of polytopes
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Volume Bounds

Let P be a lattice d-polytope with Ehrhart h-vector

h(z) = hsz
s + hs−1z

s−1 + · · ·+ h0 .

Theorem (Haase–Nill–Payne 2009) volP (and, consequently, all hk ) are
bounded by a number that depends only on d and s.
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Volume Bounds

Let P be a lattice d-polytope with Ehrhart h-vector

h(z) = hsz
s + hs−1z

s−1 + · · ·+ h0 .

Theorem (Haase–Nill–Payne 2009) volP (and, consequently, all hk ) are
bounded by a number that depends only on d and s.

Idea: classify lattice polytopes of large dimension with small s.

This theorem was conjectured by Batyrev and improves on

Theorem (Lagarias–Ziegler 1991) If P contains j ≥ 1 interior lattice points,
volP is bounded by a number that depends only on d and j.
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Stapledon Decompositions

For a lattice d -polytope with Ehrhart h-vector h(z) of degree s , let
l = d + 1 − s be its codegree. (This is the smallest integer such that lP
contains an interior lattice point.)
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Stapledon Decompositions

For a lattice d -polytope with Ehrhart h-vector h(z) of degree s , let
l = d + 1 − s be its codegree. (This is the smallest integer such that lP
contains an interior lattice point.)

Key Observation (Stapledon 2009) There exists a unique decomposition

(1 + z + · · ·+ zl−1)h(z) = a(z) + zl b(z) ,

where a(z) = ad z
d+ · · ·+a0 and b(z) = bd−l z

d−l+ · · ·+b0 are polynomials
with integer coefficients satisfying a(z) = zd a(1

z) and b(z) = zd−l b(1
z).
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Stapledon Decompositions

For a lattice d -polytope with Ehrhart h-vector h(z) of degree s , let
l = d + 1 − s be its codegree. (This is the smallest integer such that lP
contains an interior lattice point.)

Key Observation (Stapledon 2009) There exists a unique decomposition

(1 + z + · · ·+ zl−1)h(z) = a(z) + zl b(z) ,

where a(z) = ad z
d+ · · ·+a0 and b(z) = bd−l z

d−l+ · · ·+b0 are polynomials
with integer coefficients satisfying a(z) = zd a(1

z) and b(z) = zd−l b(1
z).

Hibi’s inequality h0 + · · ·+ hj+1 ≥ hd + · · ·+ hd−j is equivalent to ak ≥ 0,
Stanley’s inequality h0 + h1 + · · ·+ hj ≤ hs + hs−1 + · · ·+ hs−j to bk ≥ 0.
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Stapledon Decompositions

(1 + z + · · ·+ zl−1)h(z) = a(z) + zl b(z)

Theorem (Stapledon 2009) 1 = a0 ≤ a1 ≤ ak for 2 ≤ k < d.
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Stapledon Decompositions

(1 + z + · · ·+ zl−1)h(z) = a(z) + zl b(z)

Theorem (Stapledon 2009) 1 = a0 ≤ a1 ≤ ak for 2 ≤ k < d.

Corollary

h2 + h3 + · · ·+ hk+1 ≥ hd−1 + hd−2 + · · ·+ hd−j for 0 ≤ k < d
2

h0 + h1 + · · ·+ hk ≤ hs + hs−1 + · · ·+ hs−k for 0 ≤ k ≤ d
h2−l + · · ·+ h0 + h1 ≤ hk + hk−1 + · · ·+ hk−l+1 for 2 ≤ k < d.
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Stapledon Decompositions

(1 + z + · · ·+ zl−1)h(z) = a(z) + zl b(z)

Theorem (Stapledon 2009) 1 = a0 ≤ a1 ≤ ak for 2 ≤ k < d.

Corollary

h2 + h3 + · · ·+ hk+1 ≥ hd−1 + hd−2 + · · ·+ hd−j for 0 ≤ k < d
2

h0 + h1 + · · ·+ hk ≤ hs + hs−1 + · · ·+ hs−k for 0 ≤ k ≤ d
h2−l + · · ·+ h0 + h1 ≤ hk + hk−1 + · · ·+ hk−l+1 for 2 ≤ k < d.

The last inequality extends

Theorem (Hibi 1994) If l = 1 then 1 ≤ h1 ≤ hk for 2 ≤ k < d.
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Stapledon Decompositions

Theorem (Stapledon arXiv:0904.3035) If P contains an interior lattice point
(and so l = 1 ), the coefficients of the decomposition polynomials for
h(z) = a(z) + z b(z) satisfy

1 = a0 ≤ a1 ≤ ak for 2 ≤ k ≤ d− 1,

0 ≤ b0 ≤ bk for 1 ≤ k ≤ d− 2.
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Stapledon Decompositions

Theorem (Stapledon arXiv:0904.3035) If P contains an interior lattice point
(and so l = 1 ), the coefficients of the decomposition polynomials for
h(z) = a(z) + z b(z) satisfy

1 = a0 ≤ a1 ≤ ak for 2 ≤ k ≤ d− 1,

0 ≤ b0 ≤ bk for 1 ≤ k ≤ d− 2.

Equivalently, 1 = h0 ≤ hd ≤ h1 and

h1 + · · ·+ hk ≤ hd−1 + · · ·+ hd−k ≤ h2 + · · ·+ hk+1

for 1 ≤ k < d
2.
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Stapledon Decompositions

Theorem (Stapledon arXiv:0904.3035) If P contains an interior lattice point
(and so l = 1 ), the coefficients of the decomposition polynomials for
h(z) = a(z) + z b(z) satisfy

1 = a0 ≤ a1 ≤ ak for 2 ≤ k ≤ d− 1,

0 ≤ b0 ≤ bk for 1 ≤ k ≤ d− 2.

Equivalently, 1 = h0 ≤ hd ≤ h1 and

h1 + · · ·+ hk ≤ hd−1 + · · ·+ hd−k ≤ h2 + · · ·+ hk+1

for 1 ≤ k < d
2.

This machinery yields all possible “balanced” inequalities for Ehrhart h-
vectors in dimensions ≤ 6.
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Stapledon Decompositions

Ingredients:

I use regular triangulation of P
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Stapledon Decompositions

Ingredients:

I use regular triangulation of P

I building on ideas of Betke–McMullen (1985)

I use a theorem of Payne (2009) on computing Ehrhart h-vectors using a
multivariate version of the h-vector of a triangulation

I realize the symmetry in Payne’s “boxes”

I use Kneser’s Theorem on subsets of abelian groups.
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Relaxing I: Unimodular Triangulations

A triangulation τ of P is unimodular if for any simplex of τ with vertices
v0, v1, . . . , vd, the vectors v1 − v0, . . . , vd − v0 form a basis of Zd.

The h-vector of a triangulation τ encodes the faces numbers of the simplices
in τ of different dimensions.
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A triangulation τ of P is unimodular if for any simplex of τ with vertices
v0, v1, . . . , vd, the vectors v1 − v0, . . . , vd − v0 form a basis of Zd.

The h-vector of a triangulation τ encodes the faces numbers of the simplices
in τ of different dimensions.

Theorem (Stanley 1980) If P admits a unimodular triangulation τ then the
Ehrhart h-vector of P equals the h-vector of τ .
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Relaxing I: Unimodular Triangulations

A triangulation τ of P is unimodular if for any simplex of τ with vertices
v0, v1, . . . , vd, the vectors v1 − v0, . . . , vd − v0 form a basis of Zd.

The h-vector of a triangulation τ encodes the faces numbers of the simplices
in τ of different dimensions.

Theorem (Stanley 1980) If P admits a unimodular triangulation τ then the
Ehrhart h-vector of P equals the h-vector of τ .

Reiner–Welker (2005) and Athanasiadis (2005) use this as a starting point
to give conditions under which the Ehrhart h-vector is unimodal, i.e.,

hd ≤ hd−1 ≤ · · · ≤ hj ≥ hj−1 ≥ · · · ≥ h0 for some j.

In particular, Athanasiadis proved that the Ehrhart h-vector of the Birkhoff
polytope is unimodal (conjectured by Stanley).
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Relaxing II: Veronese Constructions

For a lattice d -polytope P with Ehrhart h-vector h(z) , define the Hecke
operator Un through

EhrnP(z) =
Un h(z)

(1− z)d+1
.
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Relaxing II: Veronese Constructions

For a lattice d -polytope P with Ehrhart h-vector h(z) , define the Hecke
operator Un through

EhrnP(z) =
Un h(z)

(1− z)d+1
.

Theorem (Brenti–Welker 2008) There exists real numbers α1 < α2 < · · · <
αd−1 < αd = 0, such that for for any lattice d-polytope P and n sufficiently
large, Un h(t) has negative real roots β1(n) < β2(n) < · · · < βd−1(n) <
βd(n) < 0 with lim

n→∞
βj(n) = αj. Consequently, Un h(t) is unimodal.
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Relaxing II: Veronese Constructions

For a lattice d -polytope P with Ehrhart h-vector h(z) , define the Hecke
operator Un through

EhrnP(z) =
Un h(z)

(1− z)d+1
.

Theorem (Brenti–Welker 2008) There exists real numbers α1 < α2 < · · · <
αd−1 < αd = 0, such that for for any lattice d-polytope P and n sufficiently
large, Un h(t) has negative real roots β1(n) < β2(n) < · · · < βd−1(n) <
βd(n) < 0 with lim

n→∞
βj(n) = αj. Consequently, Un h(t) is unimodal.

Theorem (MB –Stapledon 2010) The αk’s are the roots of the Eulerian
polynomial, and “sufficiently large” depends only on d. Furthermore, the
coefficients h0(n), h1(n), . . . , hd(n) of Un h(t) satisfy

1 = h0(n) < hd(n) < h1(n) < · · · < hj(n) < hd−j(n) < hj+1(n)

< · · · < hbd+1
2 c

(n) .
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Special Class I: Cyclic Polytopes & Friends

Fix n lattice points on the moment curve νd(t) =
(
t, t2, . . . , td

)
in Rd and

let C(n, d) be their convex hull (a cyclic polytope).
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Special Class I: Cyclic Polytopes & Friends

Fix n lattice points on the moment curve νd(t) =
(
t, t2, . . . , td

)
in Rd and

let C(n, d) be their convex hull (a cyclic polytope). De Loera conjectured:

Theorem (Liu 2005)

LC(n,d)(t) = vol(C(n, d)) td + LC(n,d−1)(t) .

Equivalently, LC(n,d)(t) =
d∑

k=0

volk(C(n, k)) tk.
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Special Class I: Cyclic Polytopes & Friends

Fix n lattice points on the moment curve νd(t) =
(
t, t2, . . . , td

)
in Rd and

let C(n, d) be their convex hull (a cyclic polytope). De Loera conjectured:

Theorem (Liu 2005)

LC(n,d)(t) = vol(C(n, d)) td + LC(n,d−1)(t) .

Equivalently, LC(n,d)(t) =
d∑

k=0

volk(C(n, k)) tk.

This theorem gave rise to the family of lattice-face polytopes (Liu 2008).
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Special Class II: Reflexive Polytopes

A lattice polytope P is reflexive if its dual is also a lattice polytope.
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Special Class II: Reflexive Polytopes

A lattice polytope P is reflexive if its dual is also a lattice polytope.

Theorem (Hibi 1992) P is reflexive if and only if hk = hd−k for all 0 ≤ k ≤ d
2.
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Special Class II: Reflexive Polytopes

A lattice polytope P is reflexive if its dual is also a lattice polytope.

Theorem (Hibi 1992) P is reflexive if and only if hk = hd−k for all 0 ≤ k ≤ d
2.

Hibi conjectured that in this case h(z) is unimodal.
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Special Class II: Reflexive Polytopes

A lattice polytope P is reflexive if its dual is also a lattice polytope.

Theorem (Hibi 1992) P is reflexive if and only if hk = hd−k for all 0 ≤ k ≤ d
2.

Hibi conjectured that in this case h(z) is unimodal.

Theorem (Mustata–Payne 2005, Payne 2008). Hibi’s conjecture fails in all
dimensions ≥ 6. More precisely, for any m,n > 0 there exists a reflexive
polytope dimension O(m log log n) such that h(z) has at least m valleys of
depth at least n.
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Special Class II: Reflexive Polytopes

A lattice polytope P is reflexive if its dual is also a lattice polytope.

Theorem (Hibi 1992) P is reflexive if and only if hk = hd−k for all 0 ≤ k ≤ d
2.

Hibi conjectured that in this case h(z) is unimodal.

Theorem (Mustata–Payne 2005, Payne 2008). Hibi’s conjecture fails in all
dimensions ≥ 6. More precisely, for any m,n > 0 there exists a reflexive
polytope dimension O(m log log n) such that h(z) has at least m valleys of
depth at least n.

A lattice polytope P is normal if every lattice point in tP is a sum of t
lattice points in P.

Open Problem Does Hibi’s conjecture hold for normal reflexive polytopes?
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Special Class III: Matroid Polytopes

A matroid polytope is the convex hull of the incidence vectors of the bases
of a given matroid.
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Special Class III: Matroid Polytopes

A matroid polytope is the convex hull of the incidence vectors of the bases
of a given matroid.

Conjecture (De Loera–Haws–Köppe 2009) Let P be a matroid polytope.
Then the Ehrhart h-vector h(z) is unimodal, and the coefficients of the
Ehrhart polynomial of P are positive.

Verified in many cases, e.g., for uniform matroids of rank 2.

10 Years BADGeometry: Progress and Open Problems in Ehrhart Theory Matthias Beck 21



Special Class III: Matroid Polytopes

A matroid polytope is the convex hull of the incidence vectors of the bases
of a given matroid.

Conjecture (De Loera–Haws–Köppe 2009) Let P be a matroid polytope.
Then the Ehrhart h-vector h(z) is unimodal, and the coefficients of the
Ehrhart polynomial of P are positive.

Verified in many cases, e.g., for uniform matroids of rank 2.

Matroid polytopes are special cases of generalized permutahedra (Postnikov
2009, Ardila–Postnikov 2010), so there is lots of room to play. . .
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If You Ever Want To Compute. . .

YOU should check out Jesús De Loera, Matthias Köppe, et al’s LattE

www.math.ucdavis.edu/∼latte

and Sven Verdoolaege’s barvinok

freshmeat.net/projects/barvinok
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Rational Polytopes

If P has rational vertices with common denominator p then LP(t) is a
quasipolynomial of degree dimP with period p.
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Rational Polytopes

If P has rational vertices with common denominator p then LP(t) is a
quasipolynomial of degree dimP with period p.

MB–Herrmann (201?) classified Ehrhart quasipolynomials for d = p = 2 .
Increasing either one of these parameters seems tricky. . .
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Rational Polytopes

If P has rational vertices with common denominator p then LP(t) is a
quasipolynomial of degree dimP with period p.

MB–Herrmann (201?) classified Ehrhart quasipolynomials for d = p = 2 .
Increasing either one of these parameters seems tricky. . .

Linke (arXiv:1006.5612) introduced theory of rational dilation where the
coefficients of “Ehrhart quasipolynomials” become piecewise polynomial
functions.
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One Last Picture. . .

10 Years BADGeometry: Progress and Open Problems in Ehrhart Theory Matthias Beck 24



One Last Picture. . .

For more about zeros of

(Ehrhart) polynomials,

see Braun (2008) and

Pfeifle (2010).
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